Computing closest vectors in zonotopal lattices

Abstract

: A lattice L is the set of vectors arising from integer linear combinations of given basis vectors in $R^{\wedge} n$. Given some vector x, the Closest Vector Problem (CVP) is to find a vector v in L of minimum I_2-norm distance to x. CVP is a fundamental problem for lattices with many applications, and it is in general NP Hard. A zonotopal lattice is given as the set of integer points $\{v \mid M v=0\}$ when M is a totally unimodular matrix. We show how to adapt the Cancel and Tighten algorithm of Karzanov and McCormick to solve CVP for zonotopal lattices in O($\left.n^{\wedge} 3\right)$ time via the Seymour decomposition of totally unimodular matrices. The algorithm uses the decomposition to reduce the problem to a series of subproblems that are piecewise linear convex circulation and co-circulation network flow problems.

by
Britta Peis, Robert Scheidweiler (RWTH Aachen),
S. Thomas McCormick (UBC Sauder),

Frank Vallentin (Cologne)

